原文以Direct-seq:programmedgRNAscaffoldforstreamlinedscRNA-seqinCRISPRscreen为标题发布在GenomeBiology期刊
基于CRISPR基因编辑的正向遗传筛选技术已经广泛应用于“表型(phenotype)-基因型(genotype)”的鉴定研究,常见的研究类型包括鉴定与细胞增殖相关essentialgene的负选择实验、与细胞获得抗药抗杀伤能力相关的正选择实验等。其基本原理是,在遗传筛选的起点和终点,细胞群体中gRNA的种类和频率会发生富集或丢失。由于gRNA本身指代了细胞的基因型,所以研究人员可以据此来推测表型与基因型的对应关系。
但是,这种对应关系是存在局限性的。第一,根据分子生物学的中心法则,遗传信息首先要从DNA传递到RNA,再翻译为蛋白质,并进一步形成独特的细胞表型。然而在目前的研究策略中,基因的RNA表达谱(geneexpressionprofile)这一重要中间层面的信息是完全缺失的。第二,细胞异质性是近年来生物学研究的重点与热点问题。在对筛选终点的细胞群进行分析时,尽管它们呈现出类似的表型,然而它们在分子水平上的异质性是不明确的。
西湖大学近期在开放获取期刊GenomeBiology上发表了一项研究成果Direct-seq,该研究开发了一种将CRISPR遗传筛选与单细胞RNA-seq结合的新技术,通过改造gRNA序列,在单细胞水平将细胞的“基因型-基因表达谱-表型”关联起来,从而克服了上述两点局限性。该研究由该校生命科学学院马丽佳实验室完成,该校即将入学的级博士研究生宋庆凯、博士后倪科、刘敏博士为并列第一作者。
与之前已经报道的策略不同,Direct-seq在gRNAscaffold序列中加入了一段可以直接被poly(dT)反转录引物高效结合的捕获序列,使得gRNA在细胞中产生的转录本既可以被Cas9结合,实现基因组编辑功能;同时又可以像其他内源表达的mRNA一样,在RNA-seq或单细胞RNA-seq实验中作为转录本的一部分被鉴定。由于只需要对gRNA序列进行简单改造,Direct-seq对于用户使用非常友好。更重要的是,改造后的gRNAscaffold既不影响其本身基因编辑的效率,又可以兼容各类使用poly(dT)作为反转录引物的单细胞RNA-seq建库流程以及商业化平台,包括10xGenomics,FluidigmC1,DNBeLabC4等。
Direct-seq所采用的捕获序列是一段由A、G两种碱基组成的混合序列(简称“8A8G”),模拟了内源基因转录本的poly(A)尾巴。这种混合捕获序列既有与反转录引物的结合能力,又避免了与Poly(A)BindingProtein结合带来的潜在负面影响。根据实验需要,捕获序列可以添加在gRNAscaffold的Tetraloop,Loop2和Tail三个位置。因此,即使Tetraloop和Loop2被其他aptamer占用(如SAMCRISPR激活系统等),也不影响捕获序列的使用。
文章同时提供了Direct-seq兼容10xRNA-seq3’kit,10xRNA-seq5’kit和FluidigmC1/SMART-seq的参考实验流程。据文章报道,在一个使用了10xRNA-seq3’v3试剂盒的测试中,由于作者在文库构建过程中使用了巢式PCR特异性富集了gRNA转录本,Direct-seq可以在99.4%的细胞中鉴定出gRNA转录本,在捕获效率上甚至好于10x试剂盒本身提供的基于FeaturedBarcode的技术。
GenomeBiology
doi:10./s--44-w